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Covering the Set of Integers by Congruence Classes
of Distinct Moduli

By S. L. G. Choi

Abstract. A set of congruences is called a covering set if every integer belongs to at least
one of the congruences. Erdés has raised the following question: given any number N, does
there exist a covering set of distinct moduli such that the least of such moduli is N. This has
been answered in the affirmative for N up to 9. The aim of this paper is to show that there
exists a covering set of distinct moduli the least of which is 20. Recently, Krukenberg inde-
pendently and by other methods has also obtained results up through N = 18.

Suppose @ is a set of integers. The set of congruence classes h; mod m;
(i=1,2,---,1)issaid to be a covering set for @ if every integer of @ belongs to at
least one of the congruence classes #; mod m;. The question (see Problem 42 in [1])
has been raised whether for every N there exists a covering set of congruence classes
h;, mod m; (i = 1,2, --- , £) of distinct moduli for the set of all integers such that
N=m<m: - <m.

For N = 3, Davenport and Erdds, and Fried have exhibited such covering sets.
Swift settled the case N = 6, Selfridge succeeded in constructing a covering set where
N = 8,and Churchhouse (see [2]) had results for N = 9. In this paper, we shall con-
struct a covering set of congruence classes #; mod m; (i = 1,2, --- , £) for the set of
integers where 20 = m; < m, < -+ < m,. It should be mentioned that, recently,
Krukenberg has obtained results through N = 18 independently and by other methods
(see [3]). It is conceivable that a further elaboration of the method of the present paper
is capable of producing a more favorable N than 20 but the amount of computations
may then become prohibitive. Finally, it should perhaps be mentioned that the
question of determining if there exists a covering set of distinct odd moduli has also
been raised but is still open.

Notations. We denote by Z the set of integers. We denote by {m} a congruence
class modulo m and, for & = 2, we denote by {m}* h distinct congruence classes
modulo m. Precisely which of the m congruence classes modulo m are implied by the
notation {m} or {m}* will be determined (in an obvious manner) by the context in
which we use {m} and {m}*.

The following four theorems are essential to the underlying idea in our construc-
tion.

THEOREM 1. If the congruence class a mod m is covered by the congruence classes
a, mod m, - -+ , a, mod m,, then for any b, the congruence class b mod m is covered by
¢, mod my, --- , ¢, mod m,, where

c; = a; + (b — a), i=1,2,:---,¢t.
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Proof. Let n be any integer belonging to » mod m. Then n + (a — b) belongs to
amod m so that n + (a — b) is contained in a; mod m; for some i satisfying1 < i < .
Hence, n is contained in a, 4+ (b — a) mod m,.

THEOREM 2. Suppose the congruence class a mod m can be covered by the congruence
classes a, mod m,, - - - , a,mod m,. Then for any natural number c, the congruence class a
mod mc can be covered by the congruence classes a; mod mc, -- - , a, mod m,c, where

a = c(a; — a) + a, i=1,2,---,t.

Proof. Let n be any given integer belonging to @ mod ¢m. Then n — a belongs to
0 mod cm. Since @ mod m is covered by a, mod m,, --- , a, mod m,, Theorem 1
implies that 0 mod m is covered by (a;, — @) mod m,, - -- , (@, — a) mod m,. Hence, 0
mod cm is covered by ¢(a, — @) mod ¢my, - - - , c(a, — @) mod cm,, since if n* belongs
to 0 mod cm, then n*/c belongs to 0 mod m and so there is some i, 1 £ i < ¢, with
n*/c contained in (a; — @) mod m;. Thus n* = c(n*/c) belongs to c(a; — a) mod cm;.
Hence, n — a belongs to some congruence class ¢(a; — a) mod cm;, where i satisfies
1 = i < tso that n belongs to ¢(a; — a) + amod cm;.

THEOREM 3. Let n be a natural number. Then the congruence class 0 mod n is covered
by the congruence classes {2n}, {3n}, {2°n}, {2-3n}, {2%-3n}.

Proof. We note that 0 mod 1 is the union of 1 mod 2, 0 mod 4 and 2 mod 4. Now
0 mod 4 is the union of 0 mod 2°-3, 4 mod 2%-3 and 8 mod 22-3. Since 0 mod 2°-3 is
contained in 0 mod 3 and 4 mod 2°-3 in 4 mod 2- 3, we see that 0 mod 4 is covered by 0
mod 3, 4 mod 2-3 and 8 mod 2°- 3. Hence, the congruence classes 1 mod 2, 2 mod 4,
0 mod 3,4 mod 6 and 8 mod 12 constitute a covering set for 0 mod 1. Finally, Theorem
3 is a direct consequence of this covering set and Theorem 2.

COROLLARY. For any r 2 1, the set of congruence classes {2n}, {2°n}, --- , {2'n},
{3-2"7'n}, 12"'n}, {27-3n}, {27**-3n} covers the congruence class 0 mod n.

Proof. For r = 1, the Corollary is simply a restatement of Theorem 3; and for
r 2 2, the congruence classes {2}, {2%}, ---, {2"7%}, {2""'}* form a covering set for
the integers. Theorems 3 and 1 imply a class {2"7'} can be covered by {2"7'-2},
{2713}, {27"1.2%}, {277*.2-3}, {2"7'-2%.3}; and now we obtain the Corollary by
applying Theorem 2.

THEOREM 4. Suppose the set Y of integers can be covered by {m,}**, {m,}**, --- ,
{me}®* wherem, < my < -+ <myand a; = lor2(i=1,2,---,1t). Suppose
Jurther that for every pair i, j satisfying 1 £ j < i < t, the relation m;m;* = 2* cannot
hold for any natural number s unless a; = 1. Then there exists a covering set of con-
gruence classes {m}, {n,}, -+ , {n;} of distinct moduli for  where

m=n <n<- - <n.

Proof. We may suppose that «; » 2 for at least one i satisfying 1 < i < ¢ since
otherwise we already have the theorem. We denote by D the set of integers my, m, - - ,
m,; and by € the subset of D consisting of those integers such that the corresponding
a; appearing in {m;}*’ is equal to 2. We then partition € into nonempty disjoint
subsets €, -+ , €,, where @; (i = 1,2, -+, ») consists of those integers of € such
that the exact power of 3 dividing them is k;, where 0 < k;, < k; < -+ < k,. For
i=1,2, .-, p, we denote any integer in @, by ¢, and we denote by c7* and ¢™** the
least and the largest of the integers in €,. Clearly, we have
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Now, as is possible by Theorem 1 and the Corollary of Theorem 3, we can cover {c;}
by

{20,'}, e, {27.‘0"}’ {3'2“-1‘:‘}, {2”*’10,'}, {2”’3‘0;}, {2”4-1.3.0‘};

and we choose r, inductively so that

Q®) 27 > m,
and
(3) 2r.'c?in > 2”““‘3’0?:; i=v—1,v—2,+--,1.

On defining ©, and D* by
4 D, = \J {2, -+, 2%, 327 ¢, 27 ey, 270300y, 2730y

ciE€Cy

and

(5 or = U (da},
€D

we obviously have

U {e.} C dU {d.} = DF,

ci€C s€Dy

so that, in view of (1), we have

t
Uiml“ CortU - UDU (m} U -+ U {m}.
iml

To establish the theorem, it thus suffices to show the following:

(i) For any given i satisfying 1 < i < v, the integers in D, are all distinct.

(i) If x € D; and y € D; where i & j, then x = y.

(iii) If x €& D, where i satisfies 1 < i < v, then x ¥ m; for any j satisfying
l=sj=st

We first show that (i) holds. Suppose 2:3%s,, 2%°3°s, are two integers belonging
to D;,where oy = 0,0, = 0, 8, = 0, B, = 0and sy, s, € @,. The same exact power of
3 divides both s, and s,. We may further assume that s, > s,, so that without loss of
generality s, > s, (since if 5; = s,, then, clearly, 2%:3%s,, 2%°3%s, are different). Then
s, = 2°s, cannot hold for a natural number s since there are two congruence classes
of modulus s, in the set {m,}**, - -+, {m,}**. Therefore, there exists a prime p (#2, 3)
so that the exact power of p dividing s, is not equal to that dividing s,.
Thus, 2%:3%s, % 2°°3%5,, as required.

Next, we show that (ii) holds. We may suppose without loss of generality i > j.
Then (3) implies that y is either greater than any integer in D, and in this case we
already have the validity of (ii), or else y = 2*c; where k > 0 and ¢; € @;. Since x is
of the type 2%3°c; where & = 0, 8 = 0 and ¢; € @, clearly, y cannot be equal to x,
the exact power of 3 dividing x being clearly greater than the corresponding one for y.
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Finally, we show that (iii) is true. In view of (2) and (3), x is either greater than m,
(and in this case obviously x and m; cannot be equal) or x is of the type 2*c; where
k > 0and ¢; € @;. Now, the equality between x and m; would imply that m; = 2*m,
since ¢, is equal to some m, where [ satisfies 1 < / < ¢. This is clearly an impossibility
since a; = 2.

Prior to the actual construction of the required covering set for Z, we shall here
introduce some further definitions and notations.

Definition 1. Let @ be a set of integers. Then the set of congruence classes
{m}*, -, {m}*,wherem, < --- <m,anda; = lor2(@(=1,2,---, f),is said
to be @-good if @ is covered by {m,}**, --- , {m,}** and if for every pair i, j, sat-
isfying 1 £ j < i £ ¢, the relation m;m;' = 2* cannot hold for a natural number s
unless o; = 1.

In view of Theorem 4, the existence of an @-good set implies the existence of a
covering set of congruence classes of distinct moduli for @ such that the least modulus
of the latter is not smaller than the least modulus of the former.

Definition 2. An integer n is said to belong to ¢, - -- g, where g, is the ith largest
prime divisorof n(i = 1,2, --+ , r). Thus, if g, > g, > --- > g, are all the distinct
prime divisors of n, then n belongs to each of the s integers

@g: *° g, r=1,2,---,9.

Definition 3. Suppose § is a set of congruence classes. Then we define the index of §
to be the smallest of the moduli of the congruence classes in §.

In view of the above definitions and Theorem 4, our aim in this paper is to show
that there is a Z-good set of index 20.

It is almost self-evident that if o is @-good and 9 is ®-good, and if a certain prime
divides each of the moduli in & but none of those in Y, then X U Y is @ U ®-good.
On making use of this fact, we see that the following theorems (Theorems 5-13) clearly
imply that \_Uf., @, is Z-good. That\_J’_, @, is of index 20 is easily verified. Perhaps,
we should mention that a little scrutiny is required to verify that @,, together with the
congruence classes in (I) of Theorem 8, form a {2*} \U $-good set, where § is the set
covered by (I). Finally, we mention that the parameter k appearing in the following
theorems stands for any given integer > 111.

THEOREM 5. A Z-good set is the set of congruence classes {2°}, {2°}, {2*}, 12°}%,
{2-3}, {22-3}, {2%-3})?, {2-3%}, {2%-3%}%, (3%}, {2-3%}°. We denote by @, the set
{2°)% {2°-3)7 (2%-3%)7, {37}, {2-3%}"

THEOREM 6.* There exists a {2°}-good set @, of congruence classes whose moduli all
belong to 5, namely

{3%-5}, {23 5}pm1.08s
{2‘2 * 35‘ 5” } a=0,1;8=0,1,2,3;y=2,3,4» {22‘ 35' 57};-0.1.2.3;7-1.2.3.4~
THEOREM 7. There exists a {2*}-good set G, of congruence classes whose moduli all
belong to 7, namely

* It will be noticed that the moduli listed in Theorems 6-13 invariably include some which
are not actually used in the proofs, and this is done for the convenience of listing. It is also clear
that these moduli in excess in no way affect the final outcome in our present approach concerning
the computation of the smallest modulus used in a covering set of distinct moduli.



COVERING SET OF DISTINCT MODULI 889

{2'72}’ {za'33'51'76}a-2.3;3-0.l:'y-0.l:5-l.2
where we exclude the case & = 2,8 = 1,y = 0, and
{2‘°3ﬁ'51'75}2-0.1:1-0.1:8-1,%

THEOREM 8. There exists a {2-3}-good set @, of congruence classes whose moduli
all belong to 7, 11-7, 37-11.7, 13.7, 13.11-7, 37-13-11.7 or 37-13-7. These con-
gruence classes fall into 3 main categories, namely,

{72}’ {2'33'78};-0.1.% {3373}5-0.1,2,

{27437 guo1.2i7 1,25

{27357} 11801171,

(325577}, {2:3%.5% 7"} 0 riymrinn
{3955 77118, {2:3% 5% 77 11} 01 2ipm01, e kgt 2ibm1 2, oo e ks
an {2:3-5 7117 37} prn. oo tas gt 2 s

{2:3:7-11°-37} 50100, cvv 7

(273750 77 11513} 40, 1:6m001, o oo ki5m0, 15y m1,256m0,15
(I11) {22:3%. 5% 11577 13} 501, ee kism0,1 59 m1,256m0,15

(273250 77 13 115 3T} gt n, een 74:8m0,1:cm001 7m0 20

n

THEOREM 9. There exists a {2°-3}-good set @5 of congruence classes whose moduli
all belong to 11 or 1137 but none of these moduli is divisible by 1. These congruence
classes are :

{2%-3%.57.11}, {2*-3%.57-11}7,
whereaa=0,1;8=0,1, -+ ,k;v = 0,1 but thecase a = B = v = 0 is excluded, and
{22° 3.57.37. 11} par,2, 000 7819 =001+

THEOREM 10. There exists a {2-3%}-good set G of congruence classes whose moduli
all belong to 13 or 13-37 but none of these moduli is divisible by 1. These congruence
classes are

{3*.5%.117.13%), ({2-3*.5%.117.13%)7,

where a = 0,1,2,3;8=0,1;v=10,1;8 = 1,2, but thecasea = = v =0,
8 = 1 is excluded.

THEOREM 11. There exists a {2°-3}-good set @, of congruence classes whose moduli
all belong to 17 or 17-37. They are

{2%.3%.57.7°.11°-13%- 17}, {2°.3%.57.7°. 11°-13%.17}°,
wherea = 0,1,2,8=0,1,2,3;vy=0,1,2,--- ,k;6=0,1; e =0,1; ¢ = 0, 1 but
we exclude the case a = B = v =6 =¢=¢ = 0, and
{2243:573717} 12, eveirits

THEOREM 12, There exists a {2°-3}-good set @, of congruence classes whose moduli

all belong to 19 or 37:19. They are
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{27-3%.57. 7" 1104 13%17% .19}, (28375770 110-13%177 - 19)2,

wherea = 0,1,2;,8=0,1,2,3;y=0,1,--- ,k;6=0,1;¢=0,1;¢ =0, 1;
¥ =0,1butweexcludethecasea =8=y=6=e¢=¢ =y =0, and

{2°3-57-17%-37-19} yc12. ettty m0n

THEOREM 13, There exists a {2°-3}-good set @, of congruence classes whose moduli
all belong to 23, 23-37, 29 or 31. They are

{2%.3%.5". 7" 110 13%.17¥ .19 .23}, {2°-3%.57.7%.11'-13%.17%-19". 23}
wherea = 0,1,2;,8=0,1,2,3;y=0,1,--- ,k;6=0,1;e=0,1;¢=0,1;
v=0,12=0,1,

{2%43-57-17%-1923-37} ;120 e 1113y —0.1 Am01
and
{27-3%.57.7°.11'.23".q},  {2°-3°.57.7'.23".4)°

where« = 0,1,2;8=0,1,2,3;y=0,1;6=0,1;a=29,31;s=0,1; e =0, 1.

We now proceed to the proofs of Theorems 5-13. The steps in the proofs will be
presented in tabulated form. In each of these tables, the right-hand column will
consist of covering sets of congruence classes for the corresponding congruence
classes in the left column.

Proof of Theorem 5.
z {2}, {27, (2%, (2%, (2%
{2} = {2-3}7| {2-3}, {2%-3}, ({(2°-3}", {2.3%}*
{2-3%}° {2-3%}, (2°-3%)%, {2-3°}°
{2-3°)° {3}, {2-3°)°
Proof of Theorem 6.
{2%) = (2°-5)° | {2%-5})7{2%-3-5}°(2"-57}°
{2*-3.5}° {2-3-5}{2% 3.5}%{2%. 3%.5}°{2%.3.5%}°
{2%.3%.5}° {3%-5}{2-3%-5}{2*-3%.5}%{2%-3%.5}*{2%. 3. 5%}"
{22.3%.5)° {2-3%.5}{2%.3°.5)®
{2%.5%}° {2%-5%} am0n{2°-57}7{2°-5%)°
{2?-3.5%}° {2%-3-5%} 4e0.1{27-3-5%}7{2%- 3. 5%}°
{2%.3%.5%)° {2%-3%. 5%} ou0.1 {2737 57} 2{2%. 3%. 5}
{2*.3%.5%)° {2-3°.5%} {2%.3°.5%)°
{2°.5%)° {2 5%} amon{2°-5°)7(2°-54)°
{2%-3.5°}° {2%:3-5*} 4u0.1{27-3-5%)7{27-3%. 5°}®
{27.3%.5%)® {2-3%.5°}{2%.3%.5%}7
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{2°-5° {2%5% amo.n{27-5*)7(2%- 3. 57
{2?.3.5%)° {2-3-5*}{2%-3.5%)7

Proof of Theorem 1.
{2} = {2877 | (2% T}amn{ 2 7)7(2" 3. 772" 50 7} (20 7Y
{2¢-3.7}2 {2°-3-7}{2*.3.7}?
{2*.5.7}° {2957} om2.5{24-5-7}%{2*-3-5.7}°
{2*-3.5.7}* {2%-3-5:7} us.5.4
{2¢-7*}7 {277} ger.2.5 (2 77} 2{20- 3. 7}3{ 2% 5. 7}°
{2¢.3.7%}® {2°.3.7°}{2*-3.7%}?
{2¢.5-7%}° {2°.5:7"} 4us.s{2'-5-77}2{2%-3.5.7%}°
{2-3.5.7°}® {2%43:5- 7} 234

Proof of Theorem 8.
Step 1.

{23} = {2-3-7}7 | {2%3-T}am0.1.2{2°+3-7-13}%{2-3%.7}®
{2-3-5.-7}%{2-3-7°}"{2-3-7-11}"

{2-3%.7}® {3%.7}{2-3%.7}*

{2-3.5.7}° {27357} smo.1:pm0.112° 3757}

{2-3%.5.7}° {3*.5.7}{2-3%.5.7}?

{2-3-7%}7 {3% T} gm0 {2-3- 7} {27-3- 77} {2+ 3- 7% 13} ®
{2-3%.7%}3{2-3-5.-7*}°{2-3- 7}

{2.32_72}3 {32'72}{2.32_72}2

{2-:3-5-7°}° {27375} uco1:8m0.0{2:3%-5-T°}°

{2-3%.5.7}® {3*.5-7*}{2-3%-5-7°}*

{2-3-7%}7 (3% 7} m0.1{2: 3% T*} om0 {2-3°- 7%}

{2.32.73}3 {32.73}{2_32_73}2

A comparison of the moduli listed in Step 1 and in (I) of Theorem 8 reveals that a
covering set of {2-3} consists of all the classes in (I) together with {2°-3.7-13}%,
{2*-3-7°-13}*® and {2-3-7-11}". It is the aim of Steps 2 and 3 to replace these latter
congruence classes by appropriate congruence classes which cover them.

Step 2.
{2-3-7-11}" (3% 7 11} gm0.1 {237 11}500.,{2-3%-7- 11}
{2-3-5.7-11}"°{2-3-7*- 11}7{2-3-7- 11"}
{2-3%.7-11}® {3*.7-11}{2-3%.7-11}?
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{2-3-77-11}7 {3272 11} gu0.1.2{2: 3% TP 11} 5012

{2-3-5-7-11}"° {37-5-7-11}4m0.4{2-3%-5-7-11}30.1{2-3-5-7-11}°
{2-3.5-7-11}"{2-3-5%.7-11}'°

{2.3%.5.7-11}® {3*.5-7-11}{2-3%-5-7-11}*

{2-3-5.-7°-11}" {3%-5-7 11} pa0.1.2{2-3-5- T 11}30.1.2

{2-3.5%.7-11}* similar to treatment of {2.3-5.7-11}"°

{2-3-5*.7-11}"° {3°.55 7 11} pu01.2{2: 3% 55 T- 11} 50,10

(3°-55 7% 11} po0.1.2{2- 355 72 11} 50,1 2 {2-3- 5% 7. 11-37}™
{2-3-557-11-37}™ | {2-3-5"-7-11-37} 1.2, ceeta
{2:3-7-11*} treated in a similar way to  {2-3.7-11}""

............

{2-3-7-11%}" {3%-7-11%} 501 {2-3°- 7 1%} 506, {2- 37 7 11%)°
{2-3-5-7-11*}"°{2-3-7*-11*}"{2-3-7-11*.37}*
{2-3.7-11*.37}*" {2:3-7-11°-37} 5212, 00030

Step 3. Here v = 1 or 2.

{2°.3.77.13} " (2%3%.77 13} smo11pm0.1 1273277 - 13} 50,1 {27 3%.77 - 13} °
{2%-3.5.-77.13}'°{2°-3.77 . 11- 13}V

{2°.3%.77.13}° {2“-32-'7’.13}¢,_0,1{22-3’-7’-13}2{2’.33-7’- 13}°

{2°.3".77.13}° (29357713} 402 {27 3577 - 13}7{2%- 3*. 77 1337}

{2°.3%.77.13.37}™ {2°:3%.77 1337} pern, o ooa

{22-3.5.77-13}" {2%:3%-5-77 13} omo.1:8=0.1{27-3%-5-77- 13} 501
{2°-3%.5.77.13}°

{2°-3%.5.77.13}° {29.3%.5.7"13} 4u0..{2%-3%-5-77-13}%{2%. 3%.5.77.13}°

{2*-3*.5.77.13}° {2%-3*.5.77-13} , 0., {2°-3*-5-77 - 13}°
{2°-3*.5.77-13.37}™

{2%-35.5.77-13-37}™ | {2%-3%.5.77-13-37}510. 0000

{2°-3.77 1113} {2537 77 1113} gmoi1 180227+ 3% 77 1113} 260
{2?-3%.77.11-13}°{2%-3-5-77-11-13}°

{2*-3-5-77-11-13}° {2:3%.5.77 1113} 4uo.1.2:6m01

{2°.3%.77-11-13}° treated in a similar way to  {2°.3%.5.77.13}°

Proof of Theorem 9.
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{223} = {2°-3-11}" | {2-11}{3-11}{2-3-11}{2*-3°-11}}.0.,
{2%.3%.11}°{2%-3-5-11}"°

{2%-3%.11}° {29:3% 11} yuo.a {27+ 37- 11}%{2- 3*- 11}°

{2-3*.11}° {2735 11} 4o {273 11}2{ 2% 3% 11 .37}

{2%.3*.11.37}™ {2%-3% 1137} perian oot

{2*-3.5-11}*° {2°-3°.5- 11} goo.1ipm00 {27+ 3% 511} 2., {2732 5. 11} °

{2?-3%.5-11}° {2%-3%-5-11} 4uo, {27-3%-5-11}%{2%-3%.5-11}°

{2*-3*.5-11}° {27-3*.5-11} oo {2 3%-5- 11} (2% 3*.5.11.37}™

{2?-3*.5.11-37}™ {2%-3%-5- 1137} puraveema

Proof of Theorem 10.

{2-3°} = {2-3%13}" | {3%-13}4m1.2{2-3%-13}}0.1.0{2-3%-13)°
{2-3%.5-13}'°({2-3%-11-13}"1{2.3%.13%}**

{2-3%-13}° {3*-13}{2-3%-13}?

{2-3%.5-13}"° {3513} 4m0.1,2{2°3%-5-13} % 0.1..{2-3%-5-13}

{2-3%.5.13}® {3°.5-13}{2-3%.5-13}*

{2-3%.11-13}" {3%11:13} 4u0.1.2{2-3%-11-13}% 5.1 .2{2-3°- 11-13}°
{2-3.5-11-13}°

{2-3°-11-13}° {3°-11-13}{2-3*-11-13}®

{2-3%.5-11-13)° {3%-5-11-13} 40,1,2{2-3%-5-11-13}?

{2-3%.13%)*® {3%13%} 4m0.1.2{2-3%-13%} 3 0.1,2{2-3%-13%)°
{2-3%.5.13*}°{2-3%.11-13*}"

{2-3*.13%}® {3°.13%}{2-3%.13%}*

{2-3%.5.13%)"° treatment similar to that of {2.3%.5.13}"°

{2-3%- 1113 treatment similar to that of {2-3%.11-13}"

Proof of Theorem 11,

{223} = {28317} | {2%17} qe1.2{2%- 317} m0.1.212% 3 17} 50
{2°.3%.17}%{2%.3-5.17}'%{2*-3-7-17}7
{2°-3-11-17}"1{2%-3-13-17}*

{2°.3%.17}° {2532 17} guo.1.2{2%-3%-17}7{2%- 3% 17}
{2*-3%.17}* {2%.3%.17}{2°-3%17}?
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{2*-3-5-17}*° {2%-3%-5-17} auo.1.2:800.1 12" 3%+ 5 17} 30001
{2*-32.5.17}°(2%-3- 817}

{2*.3%.5-17}* [2°-3%-5 17} gm0 2:8m0.0 (2" 37517}

{2*-3-5%17)" treatment similar to  {2*-3-5-17}"*

{2°-3-5*-17.37}"" {2°-3-57-17-37} 1.2, 000

{2*-3-7-17y’ {27-3%-7- 11} aco.1.3.5:8-001

{2°-3- 117" (2931117} aco.r.3:8m0.1.2§ 2% 3% 1117} 500

{2*-3-13.17}" {238 13- 17} amour.2:8m0.0.202° 3 13- 17} 30
{2°-3.5-13-17}"°

{2*-3.5-13-17}" {2°:3%-5-13- 17} uo.1.2:8m01 {2375 13- 17}500,0

Proof of Theorem 12.

{2°-3) = {2*-3-19}"° {3-19}{2°-3*-19} 428001 {2 3 193000
{2°-3%.19}°(2°-3-5-19}"*{2°-3-7- 19} "
{2’-3,11-19}"{2’~3.13.19}"{2’~3-17-19]"

{2*-3%-19}° {27-3%-19) 401 2:8-2.5(2°- 3719}

{2°-3-5-19}" treatment similar to that of {2°-3-5-17}"°
in proof of Theorem 11

{2°-3.7-19}" {29327 19} auo.1.2:8m0.1{ 2% 3% T 19} 3c0s
{2°-3%.7-19}%{2°-3-5-7-19}"°

{2°-3%.7-19}° [2°:3-7-19) uo.1.2:8m2.012°- 3+ 5-7-19)7

{2°-3-5-7-19}"° {2°-3%-5-7-19) suo.1.2:0m01 {2737 5- 7 19} 5000

{2°-3-11-19}" [2°-3%11-19) uo.r.3:0m0.1.2§2° 37 1119} 5000

{2°-3-13-19}" [2°-3-13-19) aco.1.3:0m0.1.2{2° 37 1319} 400
{2‘-3‘-5-13-19;.-0,.,,;,-0',{2’.3‘-5-13-19]3-0,.

{2°-3-17-19}" 19@, = {19x; x € @,}

Proof of Theorem 13.
12°-3} = {2°-3-23}" (2323} ot gm0 20323500, (27 37-23)°
{2°-3.5-23}"%(2%-3-p- 23} cniasarae
{2°-3.7-23}"4(2°-3-23-29} (2" 3-23-31}"
{2°-3%.23)* similar to treatment of {2°-3%-19}°

{2°.3.5-23}" similar to treatment of {2°-3-5-19}"°



{2
{2
{2*
{2*
{2*

{2*-

(2"
(2"

{2’
{2
{2’
{2
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-3.7.23}"

3-11-23}"
3-13.23}"
3-17-23}7
3.19.23}"°
3.23.29}%

3%.23.29}"

3%.23.29}°
3.5.23.29}%

-3.7.23.29}7
-3.23.31}%

-3%.23.31}"
-3.5.23.31}*
-3.7.23.31}™
-3-11-23-31}"
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similar to treatment of {2°.3.7.19}™

similar to treatment of {2°-3-11-19}"

similar to treatment of {2°-3.13.19}"

23@; = {23x; x € Q,}

23Q4
{2%-3%.237.29} 4 e0.1.2:8m0,1:7=0.1{ 2%+ 37237229} 3 0.1 iy o
{2°.3%.23.29}'%{2%.3.5.23.29}%°{2%.3.7.23.29}7
{2-3%237-29} 4uo,1,257m0.1 {27+ 3723729} L.
{2°.3%.23.29}°

{2%+3°.237.29} 4 o0.1.2:7 0.1

{2%:3°.5:237-29} 4u0.1.2:6m0,1:7 =001
{2°.3%.5.237.29}% 5.1.ym0

{2%.3%.7-29} oo0.1.2:8m0.1{ 2%+ 3-7- 2329}

(223723731} omo1.2:8m0.159m0.0 {22+ 372237 31} 50011y m0
{2°.3%.23-31}"%{2°-3-5.23.31}*°({2%.3.7.23-31} "
{2*-3-11.23-31}"

treatment similar to  {2°.3%.23.29}"2

treatment similar to  {2°-3.5.23.29}%°
{2%+3%.7-237 31} 4u0.1.2.3:8m0.1 1y =001
{2%:3%:11-237 .31} 4u0.1.2:8=0,1;y =01
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