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Covering the Set of Integers by Congruence Classes 
of Distinct Moduli 

By S. L. G. Choi 

Abstract. A set of congruences is called a covering set if every integer belongs to at least 
one of the congruences. Erdos has raised the following question: given any number N, does 
there exist a covering set of distinct moduli such that the least of such moduli is N. This has 
been answered in the affirmative for N up to 9. The aim of this paper is to show that there 
exists a covering set of distinct moduli the least of which is 20. Recently, Krukenberg inde- 
pendently and by other methods has also obtained results up through N = 18. 

Suppose a is a set of integers. The set of congruence classes hi mod m, 
(i = 1, 2, ... , t) is said to be a covering set for a if every integer of a belongs to at 
least one of the congruence classes hi mod mi. The question (see Problem 42 in [1]) 
has been raised whether for every N there exists a covering set of congruence classes 
hi mod m, (i = 1, 2, * * *, t) of distinct moduli for the set of all integers such that 
N?< m < m2 ... < Mn. 

For N = 3, Davenport and Erdos, and Fried have exhibited such covering sets. 
Swift settled the case N = 6, Selfridge succeeded in constructing a covering set where 
N = 8, and Churchhouse (see [2]) had results for N = 9. In this paper, we shall con- 
struct a covering set of congruence classes hi mod mi (i = 1, 2, * * *, t) for the set of 
integers where 20 = mi < M2 < * < m,. It should be mentioned that, recently, 
Krukenberg has obtained results through N = 18 independently and by other methods 
(see [3]). It is conceivable that a further elaboration of the method of the present paper 
is capable of producing a more favorable N than 20 but the amount of computations 
may then become prohibitive. Finally, it should perhaps be mentioned that the 
question of determining if there exists a covering set of distinct odd moduli has also 
been raised but is still open. 

Notations. We denote by Z the set of integers. We denote by { m } a congruence 
class modulo m and, for h > 2, we denote by {m}h h distinct congruence classes 
modulo m. Precisely which of the m congruence classes modulo m are implied by the 
notation {m} or fm}" will be determined (in an obvious manner) by the context in 
which we use I m } and {m I}. 

The following four theorems are essential to the underlying idea in our construc- 
tion. 

THEOREM 1. If the congruence class a mod m is covered by the congruence classes 
al mod mi, * , a, mod m , then for any b, the congruence class b mod m is covered by 
c, mod mi, * , c, mod m , where 

ci = a, + (b - a), i = 1, 2, * * , t. 
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Proof. Let n be any integer belonging to b mod m. Then n + (a - b) belongs to 
a mod m so that n + (a - b) is contained in a, mod m, for some i satisfying 1 9 i < t. 
Hence, n is contained in a, + (b - a) mod mi. 

THEoREm 2. Suppose the congruence class a mod m can be covered by the congruence 
classes a1 mod ml, ... , a, mod m,. Thenfor any natural number c, the congruence class a 
mod mc can be covered by the congruence classes a, mod m,c, ... , a, mod m,c, where 

a= c(ai - a) + a, i = 1, 2, , t. 

Proof. Let n be any given integer belonging to a mod cm. Then n - a belongs to 
0 mod cm. Since a mod m is covered by al mod mi, * , as mod mg, Theorem 1 
implies that 0 mod m is covered by (al -a) mod mi, * * *, (a, - a) mod m,. Hence, 0 
mod cm is covered by c(al - a) mod cm,, ... , c(a. - a) mod cmt, since if n* belongs 
to 0 mod cm, then n*/c belongs to 0 mod m and so there is some i, 1 : i < t, with 
n*/c contained in (ai -a) mod mi. Thus n* = c(n*/c) belongs to c(a -a) mod cmi. 
Hence, n - a belongs to some congruence class c(a; - a) mod cm;, where i satisfies 
1 ? i - t so that n belongs to c(a; - a) + a mod cm,. 

THEoRM 3. Let n be a natural nwnber. Then the congruence class 0 mod n is covered 
by the congruence classes {2n}, {.3n}, 122n}, {2.3n}, 122. 3n}. 

Proof. We note that 0 mod 1 is the union of 1 mod 2, 0 mod 4 and 2 mod 4. Now 
O mod 4 is the union of O mod 22.3, 4 mod 22. 3 and 8 mod 22.3. Since 0 mod 22. 3 is 
contained in 0 mod 3 and 4 mod 22. 3 in 4 mod 2*3, we see that 0 mod 4 is covered by 0 
mod 3, 4 mod 2.3 and 8 mod 22. 3. Hence, the congruence classes 1 mod 2, 2 mod 4, 
O mod 3, 4 mod 6 and 8 mod 12 constitute a covering set for 0 mod 1. Finally, Theorem 
3 is a direct consequence of this covering set and Theorem 2. 

COROLLARY. For any r 2 1, the set of congruence classes { 2n }, { 22n}, I . , { 2n }, 
3.2 r-71n} , 12r+ln} {2r*2.3n} , {2r+l .3n} covers the congruence class 0 mod n. 

Proof. For r = 1, the Corollary is simply a restatement of Theorem 3; and for 
r 2 2, the congruence classes {2}, {22} * {29. } 1 {27-1}2 2 form a covering set for 
the integers. Theorems 3 and 1 imply a class {2-1} can be covered by {2r-1 21, 
{2t-1 .3}, {2r-1 .22} {2r-1 .2.3}, {2r-1 *22.3}; and now we obtain the Corollary by 
applying Theorem 2. 

THEOREM 4. Suppose the set cy of integers can be covered by {mi } I , {m2} "a . . . 

im,t I where ml < M2 < . * < m, and a i = I or 2 (i = 1, 2, , 9 t). Suppose 
further that for every pair i, j satisfying 1 < j < i < t, the relation mimi 1 = 2' cannot 
hold for any natural nwnber s unless a, = 1. Then there exists a covering set of con- 
gruence classes {n,}, { n2 I , . . 

9 {In, } of distinct moduli for cy where 

ml = n, < n2 < *. < nl. 

Proof. We may suppose that a, ; 2 for at least one i satisfying 1 _ i ? t since 
otherwise we already have the theorem. We denote by 5D the set of integers ml, M2, . . .* 

m,; and by e the subset of D consisting of those integers such that the corresponding 
a, appearing in { min is equal to 2. We then partition e into nonempty disjoint 
subsets 1, ... , C,,, where C, (i = 1, 2, ... , v) consists of those integers of e such 
that the exact power of 3 dividing them is k,, where 0 ? kl < k2 < * * < k,. For 
i = 1, 2, * , v, we denote any integer in e, by c, and we denote by c,in and cil" the 
least and the largest of the integers in e,. Clearly, we have 
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(1) U {~~~mi} ai = U Ci}) U ( mi})@ 
il ~~~i-1 ciEei il1 

Now, as is possible by Theorem 1 and the Corollary of Theorem 3, we can cover { c, 
by 

{2ci , , {2 ci }, { 3*2rlci , {12 r1Ci}4 {12 r 3-ci , 12 ri+ 3 1 c, 

and we choose r, inductively so that 

(2) 2tcm'a > m 

and 

(3) 2ricmin > 2ri+,+l 3. Cmax (i = v - 1, v - 2, , 1). 

On defining XE, and D* by 

(4) Ji = ) {2c,, , 2 rc,, 32 riCi, 2ri+lc, 2ri.3c, 2ri+l 3 c} 

and 

(5) = U {di}, 
d. EE Di 

we obviously have 

U {c c U { di } = D*, 
ciEei diEDi 

so that, in view of (1), we have 

U{mi1ai C O*U * J S*U {ml)VJ. U{mt. 
i-1 

To establish the theorem, it thus suffices to show the following: 
(i) For any given i satisfying 1 ? i < v, the integers in X, are all distinct. 

(ii) If x E O, andy E Di where i 5 j, then x 5 y 
(iii) If x EE Xi where i satisfies 1 < i < v, then x $ mi for any j satisfying 

1 <?j _ t. 
We first show that (i) holds. Suppose 2a13$1si, 2a23%s2 are two integers belonging 

to Di. where a1 > 0, a2 > 0, f1 > 0, 12 > 0 and sl, S2 E ei. The same exact power of 
3 divides both sl and s2. We may further assume that s, 5d s2, so that without loss of 
generality s1 > s2 (since if s1 = S2, then, clearly, 2a 130si, 2a230s2 are different). Then 
s, = 28s2 cannot hold for a natural number s since there are two congruence classes 
of modulus s2 in the set {ml} I , * a {m: } a I . Therefore, there exists a prime p (p2, 3) 
so that the exact power of p dividing s, is not equal to that dividing s2. 
Thus, 2a`301s, F 2a332S2, as required. 

Next, we show that (ii) holds. We may suppose without loss of generality i > j. 
Then (3) implies that y is either greater than any integer in Di and in this case we 
already have the validity of (ii), or else y = 2kci where k > 0 and c; i ej. Since x is 
of the type 2a30c, where a > 0, ,B > 0 and c, EE e, clearly, y cannot be equal to x, 
the exact power of 3 dividing x being clearly greater than the corresponding one for y. 
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Finally, we show that (iii) is true. In view of (2) and (3), x is either greater than mg 
(and in this case obviously x and mi cannot be equal) or x is of the type 2kci where 
k > 0 and ci E C,. Now, the equality between x and mi would imply that mi = 2kmj 
since c, is equal to some ml where I satisfies 1 < I < t. This is clearly an impossibility 
since a, = 2. 

Prior to the actual construction of the required covering set for Z, we shall here 
introduce some further definitions and notations. 

Definition 1. Let (a be a set of integers. Then the set of congruence classes 
{miIl }, , {mm, I where ml < ... < me and a, = 1 or 2 (i = 1, 2, * .. , t), is said 
to be (t-good if (t is covered by {ml}a1, * * *, {m,}a and if for every pair i, j, sat- 
isfying 1 _ j < i ? t, the relation m,mt = 2' cannot hold for a natural number s 
unless a, = 1. 

In view of Theorem 4, the existence of an a-good set implies the existence of a 
covering set of congruence classes of distinct moduli for et such that the least modulus 
of the latter is not smaller than the least modulus of the former. 

Definition 2. An integer n is said to belong to q, ... q, where q, is the ith largest 
prime divisor of n (i = 1, 2, * * *, r). Thus, if q, > q2 > *.. > qJ are all the distinct 
prime divisors of n, then n belongs to each of the s integers 

qlq2 
... qr (r = 1, 2, , s). 

Definition 3. Suppose 3 is a set of congruence classes. Then we define the index of 9 
to be the smallest of the moduli of the congruence classes in S. 

In view of the above definitions and Theorem 4, our aim in this paper is to show 
that there is a Z-good set of index 20. 

It is almost self-evident that if 9C is a-good and yJ is 6-good, and if a certain prime 
divides each of the moduli in 9C but none of those in cy, then 9C U cy is et U 6-good. 
On making use of this fact, we see that the following theorems (Theorems 5-13) clearly 
imply that UJ1 a, is Z-good. That U9 J1 ai is of index 20 is easily verified. Perhaps, 
we should mention that a little scrutiny is required to verify that a3, together with the 
congruence classes in (I) of Theorem 8, form a {24} U 3-good set, where 8 is the set 
covered by (I). Finally, we mention that the parameter k appearing in the following 
theorems stands for any given integer > 111. 

THEOREM 5. A Z-good set is the set of congruence classes { 22}, 28 }, { 24), 12} 25 

{2.3}, {22.3), {23.312, {2.32}, 122.3212, {33}, {2.3312. We denote by a the set 
{2612, {2331 2, {22. 321 2, {33}, {2.3312. 

THEOREM 6.* There exists a {22}-good set %t2 of congruence classes whose moduli all 
belong to 5, namely 

{ 32.5}, {223p*51},1,2,3, 

{2a* 3 * 5 }a-0,1;jS-0,1,2,3;-y2,3,4, 12 * 30 * - }-0, 1,2,3;y- 1, 2,3,4 

THEOREM 7. There exists a { 24}-good set a% of congruence classes whose moduli all 
belong to 7, namely 

* It will be noticed that the moduli listed in Theorems 6-13 invariably include some which 
are not actually used in the proofs, and this is done for the convenience of listing. It is also clear 
that these moduli in excess in no way affect the final outcome in our present approach concerning 
the computation of the smallest modulus used in a covering set of distinct moduli. 
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{2- 721, {2 * 3 * 5 * 7 1 a-2,3;#-0,1:v -0.1:8-1.2 

where we exclude the case a = 2, a = 1, Sy = 0, and 

12 * 3'- 5'y * 7' }-0, 1; --0, 1:8-1 ,2 

THEOREM 8. There exists a 12.31 -good set a4 of congruence classes whose moduli 
all belong to 7, 11.7, 37*11*7, 13.7, 13-11*7, 37.13.11.7 or 37.13.7. These con- 
gruence classes fall into 3 main categories, namely, 

(I) {2a * 3.771} a0,102; 1,2, 
1 2a,35.77} ,a,0,1;.2,-;7,1,2, 

{ 
2 2 5a 

; o,1 
1 

, 

2 

132 .58. 771 12}23 *5 77 }0,1 ;1 ,2 

{3a *50 *7' 1 I'} {2.3 a*S5 *7' *1 }<_0,l.20-0. , -- ,k;,y-1,2;3-1,2, -,kt 

(II1) {2*3 S * 7* 1 I*y 37}1,812, ..........,74;,f 1,2, -z,kg 

{2.3 . 7 .11 * 37} -1,2, * -,37 

{2 **S**11*13}te;o 2;t;-e2fo 

(III) { 2 .3'- 5'- 1l *7'y 13} 0_,l,.......... -,k; 8-,l1;,y 1, 2; e0,1 9 

122* 30. S * 77 * 13 - 1 1 37} p-1,2, ...,74;5-0,1 ;e0.o,y ;-1.2 

THEOREM 9. There exists a 1 22. 31 -good set a, of congruence classes whose moduli 
all belong to 11 or 11 *37 but none of these moduli is divisible by 7. These congruence 
classes are 

I 2a -3"-5'y * I1 fI {2 2- 30 5' 11}2, 

wherea=O, 1;= 0, 1, * * *, k;y = 0, 1 but the case a = -= 0- is excluded, and 

122 - 3" -5'y 37 -I1 1} 6-1,2, -- ,74;,y 0, Il 

THEOREM 10. There exists a {2. 32} -good set a,6 of congruence classes whose moduli 
all belong to 13 or 13*37 but none of these moduli is divisible by 7. These congruence 
classes are 

{3 *5 *1 *13 }, 2-3 *S *11 *-13' 2, 

where a = 0, 1, 2, 3; = 0, 1; -y = 0, 1; 5 = 1, 2, but the case a = = = 0, 
= 1 is excluded. 

THEOREM 1 1. There exists a 1 23* 31 -good set a7 of congruence classes whose moduli 
all belong to 17 or 17 37. They are 

12a.3a 577811E.131 -171, { 23 3**57' 11'*13"* 1712, 

where a = 0, 1,2;# = 0,1,2,3; y = 0,1,2,**. ,k; a = 0,1; e = 0,1; = 0, 1 but 
we exclude the case a = = y = a = e = = 0, and 

{23.- 3 St5y 37 1 7} ly 1 2,.. - lll. 1 

THEOREM 12. There exists a { 23 31 -good set a, of congruence classes whose moduli 
all belong to 19 or 37.19. They are 
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{2a*3a*5 7*7111.*13,*17**19), t23.3a.57.7a. 113*.17 .19)2, 

where a = O, 1, 2; 6 = O, 1, 2, 3; y = , 1, *z,k; 6 = O, 1; 0 , 1; 0 , I; 
= 0, 1 but we exclude the case a = = y = =e = g = 6 = 0, and 

12* 35*737 1 9r 3 -1,29 . .y,112 ;*-O,. I 

THORM 13. There exists a {228.3)-good set et9 of congruence classes whose moduli 
all belong to 23, 23.37, 29 or 31. They are 

12a 3SO 5 78 1' 130 17* 19'*23), 123.3.57.7. 11 .13? 17* 19'.23 2 

where a = 0, 1, 2; = 0, 1, 2, 3;' = 0,1, . , k; = O, 1; e=O, 1; =O, ; 
= 0, 1; X = 0, 1, 

{ 23 X3 X5'y * 17* * 19'* 23 *37} y-1 ,2, -ze,111 ;*-0.1 ;X-0.1 

and 

{2" *3" -5'y 7'. 1 23-a} {23 3.3 5'y 7'. 230 a } 

where a = 0, 1, 2; p = 0, 1, 2, 3; y = 0, 1; 5 = 0, 1; a = 29, 31; ;& = 0, 1; e = 0, 1. 
We now proceed to the proofs of Theorems 5-13. The steps in the proofs will be 

presented in tabulated form. In each of these tables, the right-hand column will 
consist of covering sets of congruence classes for the corresponding congruence 
classes in the left column. 

Proof of Theorem 5. 

z {2}, 22 } {2 3} {24} {2512 

12) = 12.3} { 123), 122.3, 12 3.3 2, 12.3')' 

12.32)3 12.32), 12 2.32)2 12. 33)3 

{2.3 3} {31 3}1 {2.3 3} 

Proof of Theorem 6. 

122) = 12 2 5) 2 2.5)2 122.3-5) 6122.52) 5 

122 .3.5)8 12 3 15} 22 3.52122. 32.5)6122 .3.525 

122 32 .5) 1 3 2 512.3 2 * 5} .22 325 52122 33. 3 3122 32 .52)5 

122. 33. 53 j2. 3 .5} 122.33.5)2 

122.52)5 12 a - 5 2)1ai1 22 52)2122253)5 

122.3.52)5 {2 a.3.5 2}a - 122 2352)2122 3.53)5 

1 22 32 52) 5 1 2a * 32 . 521} a -0. 1{ 2 2* 3 2* 5 22 33 5 23 

122.33.52)3 12.33 52) 122.33.52)2 

12 2.535 12a.5 3). a-0o 12 2.53)2122.542 5 

12 2. 3.5 3)5 1 2a 
a .3.5 3)a.112 23.532122.32.53)3 

122.32.5313 12. 32 53 122.32.53)2 
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122. 5415 12a * 54} 10o,122- 5412122. 3. 5413 

122.3.5413 12.3.541122.3.5412 

Proof of Theorem 7. 

{2 4} = { 2 4* 7} {712 * 7}a -2.312 4* 7} { 2 4* 3 7} {32 
4 .5- 7}5{2 4* 7 2} 

12 4 3= 7}3 1227 371 } {4 3 7}2 

12 4 .5715 12 *5 7}a-2.312 4.5 7 12124.3.5 713 

124 .3 5. 7}3 12 a. 3.5 7}a-2,3,4 

1 2 4 .7 72a * 72 } a-1,2131 24 .721 
2 21 2.3.71}312 4 .5. 7 215 

124. 3. 7213 12 37 2 1124 3 7 212 

1 2 4. 5 7 2 { 2' * 5 * 7 2 } <- 23{2 4.5 * 7 } {2 4 3 5 7 213 

124.3.5.7213 12 a3.57 }1a-2,3,4 

Proof of Theorem 8. 

Step 1. 

12X31 = 12.3.7 17 124*23.71 a20,l,2122 .3.7.1311312.32.713 

12.3.5. 71512 3.721712.3-7. 11111 

12. 32.713 132 .7112.32.712 

{ 2*3 - 5 *7}5 { 2 a. 3* 5 *7} a-0,1;,-O,l {2 - 3 2.5 * 7}1 

12.32.5.713 132 5 7112.325 7 12 

12. 3 . 7217 13a7 .721 a-o, 12.3 72} 122 .3.721 122 
2 
.3. 72 131 13 

12- 32 7272131 3 . 5. 721 5{ 2 3.7317 

12. 32 . 7213 1 32 721 12 32 7212 

12.3.57 2}1 {2. 3 *5*7 1a-0,1;0-0,{2 3 257 213 

12. 32 . 5. 7213 1 32 .5.721 12.32.5 . 7212 

12. 3 77 {3" 7 3}pO, 123 3 73} 2_0, {2- 32 . 7313 

12.32.7313 132 731 {12 32 7312 

A comparison of the moduli listed in Step 1 and in (I) of Theorem 8 reveals that a 
covering set of 12.31 consists of all the classes in (I) together with 122 .3.7.13115, 
122.3.72. 13113 and 12.3-7. 11 11. It is the aim of Steps 2 and 3 to replace these latter 
congruence classes by appropriate congruence classes which cover them. 

Step 2. 

12.3.7.11111 131.7. 11t#o,1 12-3-7. 11 12_0,1 12.32.7.1113 

123. 5.7 1111012.3.72. 111712. 3-7 12111 

12.32-7.1113 132-7.11112-32.7. 1112 
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{2- 3 7 2 
.I1}7 {3 

6 
-7 2* 1 1,-01,212- 3" *7 2* 1C 2,, 

{2.3.5.72. 1117{2.3.52.7 0 11110 

{2.32.5-7-1113 {32*5-7 11} {2o32 537 112 {~~~~~~~~~~2 * 3 - 5 * 7 
2 

. I1 1 }7 {357 11} ,,2{2 - 3 - 5 
2 

7- II 
1 'O,12 

{2.3.52 .7. 11}10 similar to treatment of 12.3. 5.7. 11 }110 

{2 3. 7. 11 }1 { 3 * 5 *7. 1 1 ilk -0,1.2{2 - 3 * 5 *.. 7 23170, 1,2 

{23 * 5 - 7 *1 1}_11O,1,22.37.5 *7 I 1 _0, 1, 212* 3*5 7*11*37 }74 

{2.3.5k.7111 37}74 12*3.5*--7-11737} 1,2,2--.74 

{2.3 7. 
I I k 

I 
1 1{ 3*7* { 2 _ *3k*77 * 1 13} 7B O, k7_01 {2*3 2 

7* 
1 

1 }k 

2 27 1335*7* 1 1 0 {2 5 2 - 3 - 7 *. 1 }{12 12.3*7* 1 1 k *37 .}8 7 

12.3-7. 1 I" 7}37 1{2.327.11537 a132,1--,37 

Step 3. Here Py I or 2. 

12 22 .3-T- *13 } 13 
{ 2"* 3 * 7 *. 13 } a 0, 1 ;,-0,11 {2'* 3 * 7' * 1 3 } 2_0 1 12 2 * 3 2 7' - 1 3 } 

{22 .32 .7T - 13} {2 .3 32.7 - 131}0,. 1{2 2 3 2 7* 13} {2 * 3 - 7 * 13 3 

............. 

2 2 .3 k* 7 131 {2a.3 k* 7 * 131a,O,1i{2 *3 
k 57 7 13 {2 * 312 7 - 

133 37 

122. 3k. 7 * 13. 37}74 {22 3l 7y * 13 37},-1,2, ,74 

{22 *32 t.5 77. 3* 1 3}6{22.j .j72 .3 3 1 . 

12 
2 

.3 2*-5 7' *13} {2" . 3 2*5-7' *13}< 0,1 
2 - 3 2*S 7' *13} 2{ 2 

2 
3 3*5*7' *13} 

{2 * 3 * 5 
- 

7' * 1 3} {2c * 3 * 5 
- 

7' * 1 3} 1 , ,1 {2 * 3 * 5 * 7' * 13} 

{2 2.3 k*5.7'Y13.37} 74 

.12 2 3 5.77-13*37} {2 * 3" *5*7' *13*-37} I-1,2,. .,74 

4 2 - 3 * 7V * I I * 13 } {1 2 * 3' * 7 * I I * 1 3 } 0 1 0 2 * 3 *. 7' I I 1 1 3 O @0,1 

{2 2s3 2 V I1 3*1" 3} 2 2 3.5.7- 11 *13}5 

422 * 3 - 5 * 7'y * I1 1 3 13} {2* 3' 5 - 7' * I1 -1 3 13 a-0, 1,2;-0, 1 

2 22 . 32 . 7. * I * 1 3 treated in a similar way to {22.32.5*7T .13} 6 

Proof of Theorem 9. 
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{22.31 = f22.3.11)11 {2111{3.111{2.3.111{22. 3" 11pi0o1 

{22 32 1116{22. 3.5. 1110 

{22.32.111 {2a.32.I3 a.-o,l1{22.32.II2{22.33.III6 

3A I I I6 - 2 I I2 74 

{22311 {2 * 3t * 1 }0, 1{2 * 3 1 1}{2 *3*11371} 

122. 3k5 11* { 2a 3377 11a..2 *22a.3".5I I1 371,2{23, * ,73 

12 2 1 3 = 5 2 11 .1} {12 * 3 5 * I 2 3I 1312.., 5 3 11 2_0,1 {223*32S5I11} 

{ 22* 3 *25* 111 1 2 }{ 2* 32 5* 131 } -0, 1 2 2 *3 2 S 1 1 } 3 2 13 2 5 * 1 1 3 

12.3.5.1310{3531.{35112.2351 

12.2 1 131 {3k 11 13a.123.11 11743 

12 . 3 2 S1 1 } {2*3 *a5 15 13}a-0,1,12 *3 * S 1 1 .1312*23**11*37 

122.3A:5-11-.372 t74 {2 2*3 n sm511r37}1 ot2hat o 3174 

Proof of Theorem 10. 

12 .32 = {2.3. 13.17 {23*.137a-1,2{2.3c.13} a-0,1,2 {2 3 *13} 

12. 32 5. 1311(2. 3 5.11 *13211{2.32 13213 

12. 32. 1371 {3 33 . 13 12.3 3 0,13 1 2 

12.3 .5 1310 122.351l7a-1212333.51132a-0.1212.3 *S-13} 

t23 33 .513}3 {3 33 5 13} {23 335 1 132 

t2 3*1 3 311131 113 3 -,,t23*1 3 a-0.,2, 2 33*11 *13} 

t23 32 .5.11 *13}5 

12.3 3.11. 13}13 13 3 .11 13}{2.3 3.11 13 12 

2.3 2S .511. 13 }5 t3c' 5 11 13}ac-0,1,2 2.3 2*S 11*3 13} 

12. 3 12}3 t3 *13 }a 0,1,212.3a*13 }a 01212.3 *13} 

t23 32 .5.13 21 102. 3 2.11 .1 211 

t2.3 33. 13 213 13 33 13 21 {23 33 13 2 2 

12.3 32 .5.13 32110 treatment similar to that oft 2 3 32 5-*13 } 10 

12.3 32.1 .13 2111 treatment similar to that of {2.3 32 11 - 13)} 

Proof of Theorem I11, 

123 3}3 = 123 3 -317)17 {2' *17),a_1,212c *3.17} a-0.1,2{2" *3 *17 } 2_o0 

12 33 32 .17)(23 3 3517}1 123* 3 7 17}) 

{2 3* 3 11 *17}1112 3 .3.13. 17)13 

12 * 3 * 17} {2 * 3 *17} a 0,1,212 *3 * 17} {22 *3 * 17}3 

12 3.3 3 . 17 13 12 2.33 17}1" t23. 33. 17 12 
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12' 3. .5 17)' 1f2 * 3? 5 17)a ,-o.2 :0-0o. 112' *3? 5S175 89_ 

12. 32 .5 1716123 3. 52. 17)1s 

123. 32 . S. 17)* {2 * 3? * S * 17ja -o 1 .2 2. 123 * 32 * S * 17 2 

123 35- 2 171)" treatment similar to 12'3. 5. 17) 
12. = .......... 1l 

12S 3 - 3. 5 17. 37}1 123.3. 5*179371 2 1 21 9)11 

1,23-3.7-17)' 12 - 3?. 7. 1 )a-0 1.2.3:-.0-. 

3. 3. 1 . 17}1112a n 3? 1 1.1) 12}a_o3. 13_o19)'28123? 3. 17* 19)' 

123. 32.191) 12a-39P1 19).-O.1,2;P-.1.2312"3 
j 191)20. 

12'. 3.3 1)71" t2ratm313-e17)t silo tt o f-0.22 3?13- 17)12 

121323.51)i 3 - 1.7110 

12' 3 5 131. 1)10 12 .3g5. S13 171.-0.1,2;0-0,12123 3?5 13 17. 0, 

Proof of Theorem 12. 

12 23- 3} 2" . 3. 1 190 3 3 19) 1 2a . 3? 19) a,-1 ,2;0-0. I 1 23 * 3?. 10-0.1 

233122 3.332)3 3 P.23)337 319 
23 

23. 3, 1 1. 1981 2 3 -3 1 3 19113 12S3 3 17. 19}1 

1 2'- 32. 1916 2'3"91233 1.97.23), 112;3.3123 3 3.2 

123.3223)191 similar t o tratmehat of 123.3. * 179) 

in proof of Theorem oI 

2 3.37.191' 12a 33? 7. 191 a.-0.1.2;o. 1 2 - 233? it-O, 

123 332.7 191"12 3-3 S- 57. 19110 

2 3- 32- 7. 1916 1 2a -3? 7. 19) a -0, 12;0-2312 l3 -3 2- 5.7. 19) 
2 

23 33 3S 7 591 -23571},ol;_ l *3S7 191^ 

2 - 3. 1. 7. 19110 1 2 * 3? 1 1 * 7 191, _0.1.2;o_o0l. 2 * 3? I *I9o- 

2* 3- 3 13 I 191 2' 1 10 . 3? I 3. 1 9) . <-01.2 ;,o-o 1 21 2 2 3?2 39 - 19}-0. 

1 2 - 3 - 3.1 2" * 3? S 1 3 191 -0. 1. 2;,O-o 1. 212 30 S 1 3. 19}^ 

12 23 3. 17 19}1 I (a, = I1 9x; x c- dt 

Proof ofSTheorem 13. 

l 2 *3.3 = 123 3 3 23 23 12" * 3? 231 -, 1-.l 2;o-o 1 1 23 3 3? *0 23 
) 

_o, 1 1 2 2 3 3223 6 

23 S2}1l3 3 p231"l s , 

123 3 .37 23114123 
3 .323 29 129 123 .3 23-3 131 

123 33 
2 

.23 
1 6 similar to treatment of 123 * 3 *1 

123 35 * 231 }is similar to treatment of 1 23 3 *3S5*19 153 



COVERING SET OF DISTINCT MODULI 895 

123 . 3 . 7 23114 similar to treatment of 123.3.7. 19114 

{23 .3.11*23111 similar to treatment of 123.3.11.19} 1 

123 .3 .1323113 similar to treatment of 123.3.13.!9113 

123 .317.23117 23G7 = 123x; x E a7) 

{23 .3.19*23 }19 23G8 

{23.3.23.2912 12 *3 23 *29 cK..0,1,2;-., ;y-0,1233 2 

123.32.23 291 12123* 3-5-23 29120123.3.7.23.29)7 

12 32 .23.29112 t 323. 23*29}a,0,1,2;, s0,1t2 3 23*.2912 0,1 

123 33.23.2916 

123 33.23.2916 12 . 33 23Y * 29} a 0,1,2; ,y1 

123.3.5.23.29120 12' * 30 5 23' * 291 -0,1,2;0,1; ly ;0,1 

12 . 3 5 23- *29 }to0,1; f-0,1 

123 .3.7.23.2917 12c. 3' 7*29a-,1, 2;0O0, 1 3.7.23.291 
t123 32331 

13 
12} t 3' 23 3 31 1} a -0, 1 , 2 , BDO 1 O 1t2323 

3 }$so 12 o 

12 3.32.23. 31112 123 3. 5.23. 31120123.3.7.23.31114 

12 3* 3. 11*23. 31111 

123 .32 .23 * 3 112 treatment similar to 123. 32.23.291 12 

123 * 3. 5.23. 3 1 20 treatment similar to {23.3.5.23.29 1 20 

123 3 -7.23. 31 }14 t2' 3' 3$7.23'y * 31 }a-0,1,2,3;fBto0,1; yo,1 

{23 .3. 11 .23. 31}1 t 2" 30- 11 23' 31 a-0,1,2;ftB0,1;- so,1 
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